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Abstract: - In modern power system, voltage stability is a major concern. To maintain voltage stability, it is 
desirable to assess effect of any unforeseen events and identify the nodes which are more sensitive. The most 
important task for distribution engineer is to efficiently simulate the system so that effective corrective actions 
can be taken. Load flow analysis is one of the techniques to simulate the system. This paper presents a 
probabilistic modeled load flow solution for three phase Radial Power Distribution System (RDS). Probabilistic 
model uses Monte Carlo Simulation (MCS) and considers input parameters as random variables. Input 
uncertainties are addressed using a specific shape of probability distribution function and simulation is run for 
500 trails. Simulation calculates system losses, nodal voltages and voltage stability index (SI) for all the nodes. 
The simulation results obtained incorporates the uncertainty and provides distribution of output which can be 
used as input for corrective action and planning purposes 
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1 Introduction 
In a three phase AC power distribution system 
power flows from the substation to the load points 
through different networks, buses and branches. The 
flow of active and reactive power is called power 
flow or load flow.  A systematic mathematical 
approach for determination of bus node voltages, 
currents, branch losses and active & reactive power 
flows through different branches is known as load 
flow studies. Load flow study is widely used by 
power distribution engineer for planning and 
operation of three phase distribution system. 

Distribution system deliver power to a variety of 
loads, i.e. residential, industrial, and commercial, 
etc., which are typically subjected to daily load 
variations over a wide range. The loading patterns 
of these loads peak at different hours of the day and 
connected feeders/lines, as well as the substation of 
the RDS, become heavily loaded. Since the voltage 
stability of the system is largely influenced by the 
loading patterns, it is adversely affected during these 
peak load conditions.  

To maintain voltage stability, it is important to 
predict any unforeseen events and identify sensitive 
distribution system nodes. 

 
The voltage instability can be addressed by 

techniques like reconfiguration, addition of 
capacitor banks etc., however success depends on 
efficient load flow simulation and output which can 
address uncertainty.  

In past, many solution methods have been 
developed on load flow distribution networks. In 
early research work, direct solution methodologies 
using the impedance matrix of the unbalanced 
networks was proposed by S. K. Goswami& S. K. 
Basu [1]. Similarly Zbus Gauss approach was 
proposed by T. H. Chen [2], Current injection 
method was proposed by P.A.N, Garcia, [3] 
However, above methods considers constant input 
parameters (e.g. load & line data). In real power 
distribution system scenario, input parameters will 
have significant uncertainties. Carpinelli proposed 
probabilistic three-phase load flow using a multi-
linear simulation algorithm [4]. Caramia   proposed 
a probabilistic solution method based on Monte-
Carlo simulation applied to the nonlinear three-
phase load flow equations including wind farms, 
thereby taking into account all load and line 
unbalances [5]. M. A. Golkar presented a new 
probabilistic linearization method for the load flow 
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study of radial distribution system [6]. Peñuela 
presented an approach for probabilistic analysis of 
unbalanced three-phase weakly meshed distribution 
systems considering uncertainty in load demand [7]. 

This paper presents probabilistic modeled load 
flow solution, which addresses input uncertainties as 
a specific shaped probability distribution function 
and load data is modeled as random variables. The 
proposed load flow algorithm is a simple and 
computationally fast mathematical 
model.Simulation result provides probable nodal 
voltage distribution including real & reactive power 
loses. The results help in assessing the system 
performance and the impact due to uncertainty. The 
simulation also calculates voltage stability index for 
all the nodes and provides the distribution of the 
same. 
 
2 Methodology 
Load flow solution using monte-carlo simulation is 
done using following steps: 
1.Define the load flow & stability index formulas 

& calculation algorithm. 
2.Defines the monte-carlo simulation principle. 
3.Provides simulation inputs by modeling of input 

data as random variables. 
4.Run simulation 
5.Evaluate the outputs 

 
2.1 Calculation algorithm for load flow & 
stability index 
 
2.1.1 Load Flow calculation algorithm 
Load flow calculation algorithm used in the paper is 
based on concept described by R. Raina, M Thomas, 
R. Ranjan [8] and is further modified to suite the 
probabilistic model (for Monte Carlo simulation). 
The algorithm calculates the total real and reactive 
system power loss, nodal voltages and stability 
index.  

The proposed load flow calculation algorithm 
uses the basic systems analysis method and circuit 
theory and requires only the recursive algebraic 
equations to get the voltage magnitudes, currents & 
power losses values at all the nodes. This load flow 
methodology also evaluates the total real and 
reactive power fed through any node. 

The calculation uses Carson & Lewis matrix 
method, which takes into account the self and 
mutual coupling effects of the unbalanced three 
phase line section.  Using concept of simple circuit 

theory, the relation between the bus voltages and the 
branch currents in Fig.1 can be expressed as: 

 
 

= =  (1) 

 
Where: 

Rewriting (1) 

= _              (2) 

 
Following equations (3), (4) & (5 )gives the branch 
currents between the nodes i and j: 

Vi
ag = Voltage of phase a at node i with 

respect to ground 
Vi

ab = Voltage drop between two phases a 
and b at node i. 

Vij
a = Voltage Drop between nodes i and j in 

phase a. 
Iij

a = Current through phase a between 
nodes i and j. 

zij
aa = Selfimpedance between nodes i and j 

in phase a. 
zij

ab = Mutual impedance between phase a 
and b between nodes i and j. 

Pia,Qia,Sia = Real, reactive and complex power 
loads at phase a at ith bus. 

Sijphase 

 
= Complex power at phase (a, b and c) 

between nodes i and j. 
PLijphase = Real power loss in the line between 

node i and j. 

QLijphase = Reactive power loss in the line 
between node i and j. 

SLijphase = PLijphase+ jQLijphase 

 
Fig. 1 – Three phase four wire line model 
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   (3) 

    (4) 

    (5) 

The real and reactive power losses in the line 
between buses i and j are written as;  

 =  -  

 =  -  

 =  -  
 

The algorithm computes the real & reactive 
power and uses the formula given in equation no. 
(6). Receiving end power at any phase, say phase A, 
of line between the nodes i and j is expressed as: 

 

      (6) 
k  = index of all nodes fed through the line between 
nodes i& j. 
m,n = Nodes fed through the line between i, j  

 
Fig. 2.shows the typical load flow calculation 

algorithm used with monte-carlo simulation. The 
details of formulas and computing method are in 
[8]. 

2.1.1 Stability Index calculation algorithm 

The proposed simulation also calculates the voltage 
stability index (SI) for all the nodes using load flow 
results. There are several methods to estimate or 
predict the voltage stability condition of a power 
system. The paper utilizes the voltage stability index 
defined by N.C.Sahoo, K.Prasad [9] to indicate the 
voltage stability condition at each bus of the system. 
Stability index for the bus j (SI) is defined as: 

                  (7) 

 

The proposed load flow calculation algorithm 
uses the basic systems analysis method and circuit 
theory and requires only the recursive algebraic 
equations to get the voltage magnitudes, currents & 
power losses values at all the nodes. This load flow 
methodology also evaluates the total real and 
reactive power fed through any node.The value of 
SI varies from 0 to 1. For stable operation of the 
RDS, stability Index (SI) should be nearing one. If 
the SI is nearing 0, this reflects unstable bus. 

 

 
2.2 Monte-carlo simulation method (MCS) 

Monte Carlo simulation is a computational 
algorithm that relies on repeated random sampling 
to compute the results and is used for simulating 

 
Fig. 2. Typical monte-carlo load flow calculation 

chart used with probability interpreted inputs 
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Fig.3   Electrical equivalent of one branch 
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systems with many degrees of freedom or with 
significant uncertainty in inputs. 

The MCS principle is described in Fig. 4. 
Uncertain input parameter is considered as a random 
variables P and numbers of realizations Pi of P are 
generated and load flow algorithm is run for each of 
them producing an output Ri.  The simulation is run 
for 500 trails and set of outputs Ri represents the set 
of realizations of the random variable R. The 
statistical properties of R are therefore computed 
from the realizations Ri. 

 
2.3 Modeling of Input data as variables 
This simulation is run on a typical 19 bus 
distribution system from the D. Thukram, 
H.MW.Banda, and J. Jerome [10] shown in Fig. 5. 

The Monte-carlo principle is based on 
considering input parameters as random variables 
and with defined distribution shape. Probability 
density function describes the likelihood of same 
future events. For simulation purpose connected 
load is assumed to be varying based on Table 1 
probability distribution shape. 

Input connected load data for the feeder are 
given in Table 2, Conductor data for the feeders are 
given in Table 3 & Table 4. 

 
Table – 1- Probability distribution for connected 

load 

Nodes 
Probability Distribution shape 

Shape Data 

2, 7, 
13, 

18,19 

 

a = 20% 
b =  100% 
c =  130% 

Nodes Probability Distribution shape 

4, 10, 
16 

 

a = 90% 
b =  100% 
c =  140% 

5, 12, 
15 

 

a = 15% 
b =  100% 
c =  105% 

3, 6, 8, 
9, 11, 
14, 17 

 

Mean = 1.0 
SD = 0.1 

 

 
Table – 2. Load data 

Node 
Phase 

Load in kVA 
A B C 

2 64 32 64 
3 68 32 60 
4 25 35 40 
5 40 32 28 
6 26 19 18 
7 60 50 50 
8 46 33 21 
9 76 92 82 

10 21 26 16 
11 46 46 68 
12 60 50 50 
13 27 33 40 
14 19 19 25 
15 27 30 43 

 
Fig. 5.  Shows a practical 19 bus distribution 
feeder used for the modelling and simulation 

purpose. 

 
Fig. 4. Sketch for Monte-carlo Simulation method 
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Node 
Phase 

Load in kVA 
A B C 

16 48 64 48 
17 40 30 30 
18 33 33 34 
19 54 62 44 

 

Table – 3- Conductor Data 
Conductor 

type 
Resistance 

PU/Km 
Reactance 

PU/Km 
1 0.008600 0.003700 
2 0.012950 0.003680 

 

Table – 4 -Conductor Code & Distances 
Sending 

End 
Node(IR

) 

Receiving 
End 

Node(IR) 

Conduct
or Code 

Distan
ce in 
Km 

1 2 1 3 
2 3 2 5 
2 4 1 1.5 
4 5 2 1.5 
4 6 1 1 
6 7 2 2 
6 8 1 2.5 
8 9 1 3 
9 10 1 5 
10 11 1 1.5 
10 12 1 1 
11 13 2 5 
11 14 1 3.5 
12 15 1 4 
12 16 2 1.5 
14 17 1 6 
14 18 2 5 
15 19 1 4 

 
3 Simulation Results 
The simulation is run for 500 trails and distribution 
of results are plotted as frequency distribution plot 
& cumulative distribution function (CDF) plot.  

Frequency distribution plot shows the frequency 
or count of the output within a particular group or 
data interval. Cumulative distribution function 
(CDF) describes the probability of an output with-in 
the frequency distribution and can be found as value 
less than or equal to output.Figure 6 & 7 shows the 
frequency distribution and cumulative density 
function plot for Real and Reactive power. Power 
values corresponding to 90% (0.9) cumulative 
probability are 2130 kW/1030 KVAr.  The value of 

90% (0.9) cumulative probability signifies that for a 
simulation run of 500 trails, 90% time values were 
less than 2130 kW/1030 KVAr.  This value can be 
used as an input for further planning and corrective 
action purpose. 

 
Figure 8 & 9 shows the frequency distribution and 
cumulative density function diagram of Real and 
Reactive power loss and also shows value 
corresponding to 90% cumulative probability. 

 

 

 
Fig. 8. Distribution of Real and Reactive power 
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Fig. 7.CDF of Real & Reactive Power 
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Fig. 6.  Distribution of Feeder Real and Reactive 

power 
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Table -5 provides the above data in a tabular 

format with additional data related to minimum and 
maximum values of total system power. 

Table – 5- Distribution Data for Real & Reactive 
power 

Data 
Distrib
ution 
Mean 

Std. 
Div. Min. Max. 

90% 
Cum 
prob. 
value 

Real 
Power 

kW 
1999.5 102.0 1683.2 2264.8 2130 

Reactive 
Power 
KVAr 

966.42 49.29 813.56 1094.6 1030 

 
Table –6 Distribution Data for Voltage Magnitudes 

 
Table 6 shows the simulation distribution results 

for all nodal voltages based on 500 trails. The 
minimum nodal voltage corresponding to 90% 
cumulative probability is also calculated.  Minimum 

nodal voltage value corresponding to 90% 
cumulative probability means that for 500 trains, 
90% time nodal voltage value will be more than 
calculated value. This can be used for future 
planning / corrective action purposes. 

Figure 10 is the scatter plot diagram for the mean 
voltage and nodes. The plot provides information 
about relative nodal voltages for nodes. For 
distribution data used, we can note that mean 
voltage drops for downstream nodes. The mean 
voltage value can be used for future planning / 
corrective action purposes. 

 
 

Table –7 Distribution Data for Stabilty Index 

 
Table 7 shows the simulation distribution results 

for Stability Index for all nodes based on 500 trails. 
Minimum Stability Index corresponding to 90% 
cumulative probability is also calculated which can 
be used for future planning / corrective action 
purposes. 

Mean StDev 90% prob Mean StDev 90% prob Mean StDev 90% prob
2 0.979 0.0011 0.977 0.980 0.001 0.979 0.985 0.0015 0.983
3 0.974 0.0013 0.972 0.978 0.0011 0.976 0.980 0.001 0.979
4 0.970 0.0016 0.968 0.971 0.0015 0.969 0.974 0.0016 0.972
5 0.969 0.0017 0.967 0.970 0.0016 0.968 0.971 0.0015 0.969
6 0.964 0.0019 0.962 0.965 0.0018 0.963 0.968 0.0019 0.965
7 0.963 0.0021 0.960 0.964 0.002 0.962 0.965 0.0018 0.963
8 0.953 0.0025 0.949 0.953 0.0025 0.950 0.959 0.0024 0.956
9 0.940 0.0032 0.936 0.939 0.0033 0.935 0.947 0.0032 0.943

10 0.922 0.0044 0.917 0.921 0.0046 0.915 0.933 0.0041 0.928
11 0.920 0.0045 0.914 0.919 0.0047 0.913 0.920 0.0046 0.915
12 0.921 0.0046 0.915 0.919 0.0047 0.913 0.921 0.0046 0.915
13 0.918 0.0047 0.912 0.916 0.0049 0.910 0.918 0.0047 0.913
14 0.917 0.0047 0.911 0.916 0.0048 0.910 0.918 0.0047 0.912
15 0.918 0.0049 0.912 0.916 0.0052 0.909 0.919 0.0048 0.913
16 0.920 0.0046 0.914 0.917 0.0048 0.911 0.919 0.0047 0.913
17 0.915 0.0048 0.908 0.914 0.0048 0.908 0.916 0.0048 0.910
18 0.915 0.005 0.909 0.914 0.0051 0.907 0.916 0.0048 0.910
19 0.916 0.0052 0.910 0.914 0.0056 0.907 0.916 0.0052 0.909

Node
Phase A Phase B Phase C

Mean StDev 90% prob Mean StDev 90% prob Mean StDev 90% prob
2 0.799 0.0104 0.786 0.812 0.0094 0.800 0.802 0.0098 0.790
3 0.954 0.0023 0.951 0.959 0.002 0.956 0.967 0.0031 0.963
4 0.908 0.0048 0.902 0.909 0.0047 0.903 0.921 0.0054 0.914
5 0.939 0.0032 0.935 0.942 0.003 0.938 0.949 0.0032 0.944
6 0.880 0.0064 0.872 0.881 0.0063 0.873 0.891 0.0063 0.882
7 0.925 0.0045 0.919 0.928 0.0041 0.923 0.933 0.0042 0.927
8 0.876 0.0064 0.868 0.876 0.0065 0.867 0.883 0.0064 0.874
9 0.828 0.0093 0.816 0.822 0.0097 0.809 0.836 0.0094 0.824
10 0.864 0.0073 0.855 0.862 0.0075 0.852 0.877 0.0072 0.867
11 0.845 0.0084 0.834 0.842 0.0086 0.831 0.863 0.008 0.853
12 0.807 0.0127 0.791 0.799 0.0132 0.782 0.828 0.0118 0.813
13 0.844 0.0085 0.833 0.840 0.0089 0.829 0.843 0.0089 0.832
14 0.834 0.0091 0.822 0.832 0.0092 0.820 0.835 0.0091 0.823
15 0.843 0.0091 0.831 0.839 0.0095 0.826 0.842 0.0091 0.830
16 0.836 0.0087 0.825 0.829 0.0092 0.817 0.836 0.0088 0.824
17 0.830 0.009 0.819 0.831 0.009 0.819 0.835 0.0087 0.824
18 0.837 0.0091 0.825 0.835 0.0093 0.823 0.839 0.0091 0.827
19 0.843 0.009 0.832 0.839 0.0094 0.827 0.844 0.0087 0.833

Node
Phase A Phase B Phase C

 
Fig. 10. Scatter plot of Node Mean Voltages 
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Fig. 9.CDF of Real & Reactive Power loss 
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Figure 11 is the scatter plot diagram for the mean 
Stability Index and nodes. The result shows that 
node 2, 9 and 12 are more sensitive nodes. 

 

4 Conclusion 
This paper presents probabilistic model for solving 
three phase unbalanced distribution system. The 
simulation is based on Monte Carlo method which 
relies on repeated random sampling to compute the 
results and address the uncertainty and degrees of 
freedom associated with input data. Further 
connected load is assumed to be varying based on 
pre-defined probability distribution shape, provide 
more reliable distribution of output data. 

The proposed technique addresses all possible 
input combinations and provides output snapshot. It 
also calculates values corresponding to 90% (0.9) 
cumulative probability which ccan be used for 
future planning and corrective action purposes 
including reconfiguration and capacitor sizing and 
placing. 
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Fig.11. Scatter plot of Node Mean Stability index 
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